ANTENNA AND WAVE PROPAGATIONS

UNIT-1: ANTENNA BASICS

1. Antennas convert[]
a) Photons to electrons b) electrons to photons
c) Both a and b d) none
2. Antennas are oftypes []
a) Two b) four
c) Infinite d) none
3. Which of the following is true []
a) Time changing current radiates b) accelerated charges radiates
c) Both a and b d) none
4. Radiation pattern is dimensional quantity []
a) Two b) three
c) Single d) none
5 is also called as 3-dB bandwidth []
a) FNBW b) HPBW
c) Both a and b d) none
6. One steradian is equal to square degrees []
a) 360 b) 180
c) 3283 d) 41,253
7is independent of distance []
a) Poynting vector b) radiation intensity
c) Both a and b d) none
8. The minimum value of the directivity of an antenna is $[\]$
a) Unity b) zero
c) Infinite d) none
9. Directivity is inversely proportional to []
a) HPBW b) FNBW
c) Beam area d) Beam width
10. Gain is alwaysthan directivity []
a) Greater b) lesser
c) Equal to d) none
11. Directivity and Resolution are[]

c) Both a an	d b d) none			
12. Effectiv	e aperture i	s always	than P	hysical aperture. []
a) Higher b)	lower			
c) Both a an	d b d) none			
13	Theorem	can be appl	lied to both	circuit and field theories []
a) Equality	of patterns b)	Equality of	impedance	
c) Equality	of effective l	engths d) Red	ciprocity theo	orem
14. Antenn	a temperatu	re considers	paran	neter into account []
a) Directivit	ty b) gain			
c) Beam are	ea d) beam ef	ficiency		
15. Radiati	on resistanc	e of antenna	is	
a) Physical 1	resistance b)	Virtual Resis	stance	
c) Both a an	d b d) none			
16. Antenn	a aperture is	s same as	[]	
a) Length b)) width			\ \ \ \ \ \ \ \
c) Area d) v	olume			
17. The sou	rce of scalar	r potential is	[]	
a) Charge de	ensity b) Cur	rent density		
c) Both a an	d b d) none			
18. The sou	rce of vector	r potential is	s[]	·
a) Charge de	ensity b) Cur	rent density		
c) Both a an	d b d) none			
19. R/v is ca	alled	[]		
a) Radiation	to voltage ra	atio b) resista	nce to veloci	ty ratio
c) Propagati	ion delay d) r	none		
20. Which	condition ma	akes coupled	l equations i	nto uncoupled equations []
a) Retarded	b) Helmholt	z		
c) Lorentz g	gauge d) none)		
Q. No.	ANSWER	Q. No.	ANSWER	
1	С	11	В	
2	С	12	В	

D

13

С

3

4	В	14	В

5	В	15	В
6	С	16	С
7	В	17	A
8	A	18	В
9	С	19	С
10	В	20	С

UNIT-2: THIN LINEAR WIRE ANTENNAS

1.Alternating current element is given by		I	1
a)I dl	b) I dl cosωt		
c) I dl sinot	d) I		
2potential is used to find the field compo	nents of current element	[]
a) Scalar Potential, V	b) Vector Potential, A		
c) Both a and b	d) None		
3is basic building block for any practical	l antenna	[]
a) Current element	b) Monopole		
c) Dipole	d) Loop		
4. The H_{Φ} Component will consists of field	d.	[]
a) Radiation	b) Induction		
c) Both a and b	d) All		
5. The E_{θ} Component will consists of		[]
a) Radiation	b) Induction		
c) Electro static	d) All		
6.The E _r Component will consists of		[]
a) Induction	b) Electro static		
c) Both a and b	d) All		
7. The induction and radiation fields of current of	element are equal at distar	ce of	[]
a) λ/2	b) λ/4		
c) \(\lambda/6\)	d) λ/10		
8. The radiation resistance of current element is	given by	[]
a) $R_r = 80\Pi^2 (dl/\lambda)^2$	b) $R_r = 20\Pi^2 (dl/\lambda)^2$		
c) $R_r = 10\Pi^2 (dl/\lambda)^2$	d) None		

9. The radiation resistance of short dipole is give	n by	[]
a) $R_r = 80\Pi^2 (dl/\lambda)^2$	b) $R_r = 20\Pi^2 (dl/\lambda)^2$		
c) $R_r = 10\Pi^2 (dl/\lambda)^2$	d) None		
10. The radiation resistance of short monopole is	given by	[]
a) $R_r = 80\Pi^2 (dl/\lambda)^2$	b) $R_r = 20\Pi^2 (dl/\lambda)^2$		
c) $R_r = 10\Pi^2 (dl/\lambda)^2$	d) None		
TRUE OR FALSE (QUESTIONS		
11. The radiation resistance of current element is	s applicable to dipoles up to)
height of $\lambda/8$ only.		[1
12. The radiation resistance of current element is	s applicable to mono poles up	o to	
height of $\lambda/4$ only.		1]
13. The radiation resistance of current element is	s applicable to		
dipoles up to height of $\lambda/2$ only.		[]
14. The radiation resistance of $\lambda/2$ dipole is 36.5	Ω	[]
15. The radiation resistance of $\lambda/4$ Monopole is 7	3 Ω	[]
FILL IN THE BLANK	S QUESTIONS		
16. The E_{θ} Component of current element is give	n by		
17. The E_r Component of current element is give	n by		
18. The H_{Φ} Component of current element is give	enby		
19. The main application of Loop Antenna is			
20. The Directivity of Loop Antenna is			

Q. No.	ANSWER	Q. No.	ANSWER
1	В	11	FALSE
2	В	12	FALSE
3	A	13	FALSE
4	C	14	FALSE
5	D	15	FALSE
6	С	16	$E_{\theta} = \frac{I dL \sin \theta}{4 \pi \epsilon} \left[\frac{-\omega \sin \omega t'}{v^2 r} + \frac{\cos \omega t'}{v r^2} + \frac{\sin \omega t'}{\omega r^3} \right]$

7	С	17	$E_{r} = \frac{2 \operatorname{IdL} \cos \theta}{4 \pi \varepsilon} \left[\frac{\cos \omega t'}{v r^{2}} + \frac{\sin \omega t'}{\omega r^{3}} \right]$		
8	A	18	$H_{\phi} = \frac{I dL \sin \theta}{4 \pi} \left[\frac{-\omega \sin \omega t'}{rv} + \frac{\cos \omega t'}{r^2} \right]$		
9	В	19	Direction Finding		
10	С	20	1.5		
UNIT-3	: ANTENNA A	RRAYS			
1. If t	he individual aı	ntennas of th	e array are spaced equally along a straight l	ine.	
	Then It is	array.]]
	a) Linear.		b) Non-Linear.		
	c) Both a and l	b.	d) None.		
2. Li	near arrav is a	svstem of	spaced elements.	ſ	1
	Un equally.	~ <i>,</i> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	b) equally.	L	•
c) Both a and b.			d) None.		
. T.	. TI . P T				
3. In a		·	elements are fed with a	r	1
current ofamplitude			b) Unequal.	L	J
	Equal. Both a and b.		d) None.		
0)	Both a and b.		d) Hone.		
4. In a	a Broad side ar	ray the radi	ation is along	[]
a)	X-direction.		b) Y-direction.		
c)	Both a and b.	\	d) None.		
5. In :	a end- fire arra	y the radiati	ion is along	[]
a)			b) Y-direction.	_	_
c)	Both a and b.		d) None.		
6. In i	increased end-	fire array th	e radiation is along	[]
a)	X-direction.		b) Y-direction.		
c)	Both a and b.		d) None.		
7. Wh	nich array is als	o called as H	ansen-Woodyard array.	[]
	Broad side.		b) End-fire.		
u,	Broad side.		o) End inc.		

d) Binomial.

c) Increased End-Fire

8. `	Whi	ch array is als	so calle	ed as Stone's array.		[]
	a)	Broad side.		b) End-fire			
	c)	Increased End	l-Fire.	d) Binomia	l.		
9.]	Hans	sen-Wood yar	rd arra	y is aarray		[]
	a)	Linear.		b) Non-Linear.			
	c) I	Both a and b.		d) None.			
10.	Sto	ne's array is a	1	-array		1]
	a)	Linear.		b) Non-Linear.			
	c) I	Both a and b.		d) None.			
				TRUE OR FAI	LSE QUESTIONS		
11.	The	e radiation pa	ttern o	of broad side is arra	y is along the normal dire	ection	
	Of	array axis.				[]
12	. Th	e Binomial ar	ray is	a linear array.]]
13. All coefficients of elements in Binomial array are same						[]
14.Minor lobes will exist in Linear antennas.						[]
15	. In	resulatant or	total r	adiation pattern Th	e phases will be multiplie	ed	
us	ing						
	Mu	ltiplication of	patter	ns Principle.		[]
			F	TILL IN THE BLAN	NKS QUESTIONS		
16.	Haı	nsen-Wood ya	rd Ar	ray is aarra	y .		
17.	The	e currents in N	Non lin	ear are	-		
18.	Bin	omial array v	vas inv	ented by			
19.	The	e amplitudes v	vill be	in the resultar	t pattern using principle	of multiplic	ation of
	Pat	terns.					
20.	The	e phases will b	e	in the resultant pa	ttern using principle of n	nultiplicatio	n of
	Pat	terns.					
	Q.	ANSWER	Q.	ANSWER]		
	No.		No.				
	1	A	11	TRUE			

2	В	12	FALSE
---	---	----	-------

3	A	13	FALSE
4	В	14	TRUE
5	A	15	FALSE
6	A	16	LINEAR
7	С	17	Out of phase
8	D	18	Stone
9	A	19	Multiply
10	В	20	Addup

UNIT-4: VHF, UHF and MW ANTENNAS I

1. Mi	crowave frequency range is		[]
	a) above 30MHZ	b) above 300MHZ		
	C) above 200MHZ	d) above 2000MHZ.		
2. Ya	gi-Uda antenna consists of		[]
	a) Folded Dipole	b) Reflector		
	C) Director	d) All above		
3. The	radiation resistance of folder	d dipole of equal radii is	[]
	a) 657Ohms	b) 292 Ohms		
	C) 300 Ohms	d) 277 Ohms		
- 101	0.011	1 1 - 1 - 6 1 - 1 - 1 - 6	r	,
4. The	radiation resistance of folder	d dipole of unequal radii (r ₂ =2r ₁) is	L]
	a) 657Ohms	b) 292 Ohms		
	C) 300 Ohms	d) 277 Ohms		
5. The	helix is having the geometry	of	[1
J. 1110			L	J
	a) straight wire	b) cirle		
	C) cylinder	d) All above.		
6. The	radiation pattern of helix in	Axial mode is	[]
	a) Bi directional	b) Uni directional		
	C) 4 lobed	d) Omni directional		

7. The radiation pattern of l	helix in Normal mode is	L	J
a) Bi directional	b) Uni directional		
C) 4 lobed	d) Omni directional		
8. In Normal mode of opera	tion the length of the helix is	[]
a) $> \lambda$	b) <λ		
C) =λ	d) none		
9. In Axial mode of operation	on the length of the helix is	1]
a) > \lambda	b) <λ		
C) =λ	d) none		
10. Horn antennas used in t	he frequency range of]]
a) VHF	b) UHF		
C) SHF	d) MW		
	TRUE OR FALSE QUESTIONS		
11. Yagi_Uda array is a par	rasitic array.	[]
12. The reflector is longer t	han the folded dipole in Yagi-Uda	[]
antenna.			
13. The director is shorter t	chan the Folded dipole in Yagi-Uda]]
antenna.			
14. Stone invented Helical A	Antenna.	[]
15. Mushaike invented Hor	n antenna.	[]
FILL IN THE BLANKS QUE	ESTIONS		
16. Radiation pattern of Ya	gi-Uda array is directional		
17. Helical antenna was inv	•		
	orn antennas must be		
-	ised in the frequency range of		
	guides will bethan Transmission lines.		
-v. Inc impeduate of wave	Serves times and remainsolve miles		

Q.	ANSWER	Q.	ANSWER
No.		No.	
1	С	11	TRUE
2	D	12	TRUE
3	В	13	TRUE
4	A	14	FALSE
5	D	15	FALSE
6	В	16	Unidirectional
7	A	17	John.D.Kraus
8	В	18	small
9	С	19	MW
10	D	20	higher

UNIT-5: VHF, UHF and MW ANTENNAS-II

1.Micro strip antenna was first introduced by	L	J
A). Marconi		
B). Hertz		
C). Munson		
D). Cassegrain		
2. The widely used shape for patch antennas is	[]
A). Rectangular		
B). Circular		
C). Elliptical		
D).Parabolic		
3.The efficiency of Micro strip antenna is	[]

A). High		
B). Very high		
C). infinite		
D). Low		
4. For square corner reflector the flaring angle is	[
A). 30 degrees		
B). 60 degrees		
C). 90 degrees		
D). 180 degrees		
5.The no. of images formed for a square corner reflector, using method of images are[]
A). 3		
B). 5		
C). 7		
D). 6		
6. The no. of images formed for a 30 degrees corner reflector, using method of		
Images are	[]
A). 3		
B). 5		
C). 7		
D). 6		
7. The no. of images formed for a 60 degrees corner reflector, using method of		
images are	[]
A). 3		
B). 5		
C). 7		
D). 6		
8. A single narrow beam of radiation results in square corner reflector for		
spacing of s=	[]
Α). 2λ		
Β). λ		
C). $3\lambda/2$		
D). $\lambda/2$		

9. Two narrow beams of radiation results in square corner reflector for		
spacing of s=	[]
Α). 2λ		
Β). λ		
C). $3\lambda/2$		
D). λ/2		
10. Three narrow beams of radiation results in square corner reflector for		
spacing of s=	[]]
Α). 2λ		
Β). λ		
C). $3\lambda/2$		
D). λ/2		
TRUE OR FALSE		
11. A parabola is a three dimensional curve.	[]
12. A paraboloid is a three dimensional curve.	[]
13. Fermat's principle must be followed to get a plane wave front from the dish antenna.	[]
14. In any dish antenna arrangement the parabolic reflector will acts as	Г	1
primary antenna		,
15. In any dish antenna arrangement the parabolic reflector will acts as	-	
secondary antenna	L	J
FILL IN THE BLANKS		
16. The directivity of the paraboloid is		
17. The generally used feed antenna for paraboloids is		
18. The horn and hyperbola are used in feed of dish antennas.		
19. The disadvantage (draw back) of parabolic reflector is		
20.The parabolic antenna operates in the frequency range of		

Q.	ANSWER	Q.	ANSWER
No.		No.	
1	С	11	FAL
			SE
2	A	12	TRUE
3	D	13	TRU
			E
4	С	14	FALSE
5	A	15	TRUE
6	С	16	$9.87(d/\lambda)^2$
7	В	17	HORN ANTENNA
8	D	18	CASSEG
			RAIN
9	В	19	SPILLO
			VER
			EFFECT
10	С	20	MW or GHZ

UNIT-6: Lens Antennas

lens antennas.	l	J
b)Delay.		
d)None.		
2. Electrical path length is decreased inlens antennas.		
b)Delay.		
d)None.		
3. E plane metal-plate lens are of type.		
b)Delay.		
	d)None. nlens antennas. b)Delay. d)None. pe.	b)Delay. d)None. nlens antennas. [b)Delay. d)None. pe. [

4. H plane metal-plate lens are oftype.		[]
a) Fast	b)Delay.		
c) Both a and b.	d)None.		
5. The following is the example of dielectric mat	erial.	[]
a) Lucite.	b)Polystyrene.		
c) Both a and b.	d)None.		
6. All dielectric materials will have the refractiv	e index of	[1
a) unity.	b)Less than unity.		
c) Greater than unity.	d)None.		
7. The design equation of lens antennas is given	by	[1
a) $R = \frac{(n-1)L}{n\cos\theta - 1}$ b) $L = \frac{(n-1)R}{n\cos\theta - 1}$			
$L = \frac{1}{n\cos\theta - 1}$			
c) Both a and b.	d) None.		
8. All metals will have the refractive index of		[]
a) unity.	b)Less than unity.		
c) Greater than unity.	d)None.		
9. By zoning the lens refractive index will		[]
a) change.	b) not change.		
c) Both a and b.	d)None.		
10. In dielectric lens, difference in electrical path	length may be cause	ed	
due to		[]
a) Length.	b)Width.		
c) Thickness.	d)None.		
TRUE OR FALS	E QUESTIONS		
11. All antenna measurements are accurate.			[]
12. All antenna measurements will be done in the	e far field		[]
13. Cylindrical coordinate system will be choosed for all antenna measurements.			

14. For better antenna measurements the tolerance value must be as large as	[]
possible.		
15. Anechoic chamber can be preferred for antenna measurements.	[]
FILL IN THE BLANKS QUESTIONS		
16. Frii's transmission formula is		
17. Comparision method for measurement of antenna gain is also called as	•••••	••
18. The formula for gain using comparision method is		
19. In two antennas method the assumption is		
20. In the case of circular or elliptical polarizations the the total antenna gain is given	en by G	AUT

Q.	ANSWE	Q.	ANSWER
No.	R	No.	
1	В	11	FAL
			SE
2	A	12	TRUE
3	A	13	FAL
			SE
4	В	14	FALSE
5	С	15	TRUE
6	C	16	$P_R=P_TG_TG_R(\lambda/4\Pi R)2$
7	A	17	Gain-Transfer
8	В	18	GAUT=
			(PAUT/Pref)
			Gref
9	В	19	GR=GT
10	С	20	GH+GV

1) The troposphere is extends up to a height of		[]		
A) 5km	B) 10km				
C) 15km	D) 20km				
2) For small distances the earth can be considered	dasregion	[]		
A) flat	B) curved				
C) conductor	D) dielectric				
3) For large distances the earth can be considered	lasregion	1]	1	
A) flat	B) curved				
C) conductor	D) dielectric				
4) In general the earth will acts as a		1]		
A) leaky resistor	B) leaky inductor				
C) leaky capacitor	D) leaky transistor				
5) According to Rayleigh if R>10, the reflecting s	urface will be considered as.	•••••	•••	[]
A) smooth region	B) rough region				
C) both a &b	D) none				
6) According to Rayleigh if R<0.1, the reflecting	surface will be considered as	• • • • • • • • • • • • • • • • • • • •	••••	[]
A) smooth region	B) rough				
C) both a &b	D) none				
7) The line of sight (LOS) distance is the distance	travelled by the	.wave.	[]	
A) diffracted	B) scattered				
C) reflected	D) direct				
8) The phenomenon of reduction of signal strengt	th due to variation in refract	ive			
index is called		[]		
A) wave tilting	B) fading				
C) diffraction	D) scattering				
9) The E-Layer of Ionosphere exists between		[]		
A) 40 to 90 km	B) 90 to 140 km				
C) 140 to 250 km	D) 250 to 400 km				
10) The F2-Layer of Ionosphere exists		[]		
between					

A) 40 to 90 km

B) 90 to 140 km

C) 140 to 250 km

D) 250 to 400 km

TRUE OR FALSE QUESTIONS

11) (Critical free	quency is	the lowest frequency	that returns from Ion	osphere at	
vert	ical freque	ncy.			1]
12) I	Maximum U	Jsable Fr	equency (MUF) is the	highest frequency tha	at returns from	
Ion	osphere Otl	ner than v	vertical frequency.			
13) [The frequer	ncy below	which the entire pow	er gets absorbed is re	ferred to as the	
Max	ximum Usal	ble Frequ	ency (MUF).		Ι	1
14)	The frequen	cy at whi	ich there is optimum r	eturn of wave energy	is called the Opt	timum
Fre	quency (OF	').]]
15) `	Virtual heig	tht is alwa	ays lesser than the Act	ual height.	Ι]
					·	
			FILL IN THE BLAN	KS QUESTIONS		
16)	The horizon	of the ea	orth, d0 is given by			
17)]	In ground o	r surface	wave propagation the	electric field at the re	eceiving point is	given
by i	s given by					
18)]	In free spac	e the pow	er received is given by	y Pr=		
19)	The basic pa	ath loss fo	or general communica	tion is given by		
20)	The relation	n between	Critical Frequency a	nd MUF is		
	ANSWE	Q.	ANSWER			
0.	R	No.				
	С	11				

Q.	ANSWE	Q. No.	ANSWER
No.	R	No.	
1	С	11	
2	A	12	
3	В	13	
4	С	14	
5	В	15	

Ī	6	A	16	

7	D	17	
8	В	18	
9	В	19	
10	D	20	

Q.NO.	ANSWER
16	3.57($\sqrt{h_t}$ + $\sqrt{h_r}$)Km
17	$\frac{4\pi h_t h_r E_0}{\lambda d^2}$
18	$P_r = (P_t G_t G_r \lambda^2) / (4\pi R)^2$
19	P _I =32.45+20log ₁₀ f+20log ₁₀ d
20	f _{MUE} =f _c secφ _į

